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Abstract
Purpose—Learning mathematics is a complex process, requiring 
many conceptual lenses and rich data sources to document and 
understand students’ construction of knowledge. The purpose of 
this article is both to introduce a unique database on students’ 
mathematical learning and to describe analytical techniques used to 
study students’ growth of the knowledge of mathematics and 
language.
Design/Approach/Methods—Our approach includes the following 
aspects: First, we describe a unique collection of video-taped 
recordings of longitudinal and cross-sectional studies of diverse, U.S. 
students, learning mathematics (Video Mosaic Collaborative, VMC). 
Second, we introduce our analytical methods, which utilize the 
database for collaborative study of students’ learning. These 
methods include video-narrative analyses that display fine-grained 
examinations of interactions among students who are solving 
engaging problems that require them to reason mathematically 
and to represent their understandings with language and non-
language forms. These analyses, referenced as VMCAnalytics, 
demonstrate the accessibility and flexibility of the database to study 
relationships among students’ mathematics and language learning. 
Findings—The findings generated are illustrated by two examples 
demonstrating the accessibility and flexibility of the database to 
study relationships between mathematics and language learning 
(mathematics register). 
Originality/Value—The contribution of our work is illustrated by 
describing the rich database; employing a collaborative research 
approach; and signifying our understanding of relationships among 
students’ mathematical and language learning.
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Introduction and Overview

Learning mathematics is a complex process that requires a multiplicity of 
conceptual lenses and a rich data set to attempt to fully understand this 
process. Too often, however, the benefits of mathematics education research 
are limited to the community of mathematics education researchers and their 
students. Furthermore, many relevant conceptual perspectives include those 
generated by mathematics education researchers, mathematicians, applied 
linguists, discourse analysts, developmental psychologists, learning scientists, 
among others. In addition, the data that are available, often are insufficiently 
robust to support sophisticated, multidisciplinary, multi-layered, fine-grained 
analyses.

Close examination of students’ learning processes requires a rich set of 
data that affords opportunities to identify and clarify details. In order to make 
records of students’ learning behaviors more accessible and permanent, 
education researchers have, for decades, used video recordings of learning 
within classroom contexts and outside of school. Careful examination of video 
recordings supports the study of how ideas are built by students, and also 
how best to reveal the subtleties of students’ thought processes. These 
include tracing students’ cognitive growth and their use of the specialized 
language of mathematics in various social settings. Such examinations may 
provide some insights into how social processes influence students’ personal 
cognitive development (Goldman, Pea, Barron & Derry, 2014). These records 
permit both researchers and educational practitioners to collaborate in their 
efforts to develop new knowledge.

Digital tools allow researchers to explore individually or collaboratively, 
both within and across disciplines, students’ and teachers’ interactional 
processes in new ways; including tracing interactions on video records, 
excavating massive amounts of data, and capturing classroom learning 
processes. Digitally-enhanced tools for data collection and analyses generate 
large amounts of data in various modalities, offering opportunities to explore, 
combine, examine, and share data. Fine-grained examination offers 
opportunities to discover subtleties of students’ thought processes, such as 
tracing students’ cognitive growth, thus providing insights into how social 
and language processes influence students’ cognitive development (e.g., 
Wilkinson, in press a).

In the case of students’ mathematics learning, careful analysis of 
interactions among students, and between students and teachers, supports a 
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close examination of how students build mathematical ideas and 
communicate them via language; this process of discovery can be used in 
both instruction and assessment (e.g., Vanderhye & Zmijewski Demers, 2008; 
Powell, Francisco, & Maher, 2003). Furthermore, videos serve as a powerful 
tool for tracing students’ development of mathematical ideas and ways of 
reasoning over time (McDuffie, Foote, Bolson, Turner, Aguirre, Bartell, & Land, 
2014), as well as of their acquisition and regulation of the oral language that 
supports this learning (e.g., Bailey & Heritage, 2018).

A major database of students’ learning mathematics is highlighted in 
this article. The database was developed over three decades by Rutgers 
University Library, with support from the National Science Foundation: The 
Video Mosaic Collaborative (VMC). This digital repository, housed at Rutgers 
University, stores over 400 hours of video-data, metadata, and other 
research materials such as transcriptions, student artifacts, and references 
to publications. The VMC is searchable by several factors including a 
student’s grade, mathematical strand, and mathematical problem; and it is 
available worldwide. Four thousand additional hours from research studies 
are in the process of being added. Colleagues are welcome to join and 
participate in the VMC; the process for participation is detailed on the 
VMC: https://videomosaic.org/.

The VMC also stores selected analyses of elements of the database: The 
VMCAnalytics, which are video narratives describing and analyzing students’ 
learning processes. The VMCAnalytics consist of a series of annotated video 
events created from and linked to their original video-taped recordings of 
teaching and learning mathematics. These published video narratives, 
available worldwide as open source, have been used for research, instruction, 
and as an assessment tool; they are linked to scholarly publications.

As demonstrated by researchers in the learning sciences, collaborative 
design with computer tools can foster productive collaborative learning 
processes (Hmelo-Silver, 2012; Kafai, Ching, & Marshall, 1997; Kolodner, 
Camp, Crismond, Fasse, Gray, Holbrook, Puntambekar, & Ryan, 2003). Thus, 
the VMCAnalytics display a researcher’s (or team of researchers’) selection 
segments of video-taped learning events; a definition of them; the annotation 
of each element of the event; and linkages among them (Agnew, Mills, & 
Maher 2010). VMCAnalytics are constructed to serve particular purposes, such 
as showing the variety of notations, representations (including language and 
non-language forms), strategies and/or models used by students in 
mathematical problem solving. These video narratives can be supported by 
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other resources (e.g., transcripts of the language used; student artifacts; 
participants’ commentary) and may be linked to the dissemination of research 
findings, such as via presentations at both research conferences and research 
publications. After the VMCAnalytics are published on the VMC, they can be 
shared and analyzed further.

We present, as examples, two VMCAnalytics, with corresponding, 
detailed, language analyses. These examples reveal students’ mathematical 
reasoning as linked to mathematical language knowledge—the mathematics 
register, which is both interconnected and integrated in students’ interactive 
learning activities.

The first example focuses on an event with Ariel, a bilingual student, and 
illustrates the process of transitioning from the everyday oral English to the 
more specific language used in learning of an aspect of algebra (Sigley & 
Wilkinson, 2015). In contrast with everyday oral English, the more specific 
language of the mathematics register certainly follows expected conventions 
and may even be considered more precise. This may present some obstacles for 
students to transcend if they are acquiring the English as a new language and are 
not given adequate support (Chan, 2015; Moschkovich, 2018; Wilkinson, in 
press a).

The academic language register more generally refers to “the 
specialized language, both oral and written, of academic settings that 
facilitate communication and thinking about disciplinary content” (Nagy & 
Townsend, 2012). This register of school language frequently consists of 
highly technical and precise language that is densely structured through 
unique grammatical patterns, specialized vocabulary, and text organization 
(Sigley & Wilkinson, 2015). Academic uses of language enable student to 
access and engage with the school curriculum (Bailey & Heritage, 2008). 
The focus of this analysis is on the process of transitioning from Ariel’s use 
of everyday conversational language to the discipline-specific language of 
mathematics. Ariel was a 13-year-old student in 7th grade at the 
beginning of this study; his home language was Spanish. He participated, 
for more than a year and a half in an after-school, informal-mathematics 
experience as he formed algebraic concepts to solve problems, using the 
required oral and written language.

For the second example, we present Stephanie, a nine-year old 4th grade 
student who explored and constructed her justification for a general solution 
to a counting problem (Bailey, Maher, & Wilkinson, in preparation). The event 
presented in this paper represents Stephanie’s proof-like reasoning and was 
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extracted from a longitudinal study following the students’ reasoning from 
elementary through secondary school (Maher, Powell & Uptegrove, 2010). 
The students investigated a counting task that involved justifying their 
solution to finding all possible towers of a certain height when selecting from 
two colors. With her small-group classmates, Stephanie used her own 
invented notation and produced a justification by cases. Our analysis identifies 
elements of everyday and academic language, including a detailed description 
of her use of elements of the mathematics register. Stephanie incorporated 
subordinating language devices, revealing complex language. Combined with 
her contextualizing of details, Stephanie mixed elements of everyday 
conversational language with the oral mathematics register for her expression 
of mathematical ideas and symbols to present her argument by cases.

Learning Mathematics: Students’ Construction of Mathematical 
Ideas by Engaging with Challenging Tasks

Students learn mathematics as a result of their efforts to make sense of 
mathematical concepts and procedures during their problem solving. 
Evidence shows that students create their own meanings for themselves and 
reason thoughtfully by providing convincing arguments for their solutions 
(Mueller & Maher, 2009; Mueller, Yankelewitz & Maher, 2012; Lindow, 
Wilkinson, & Peterson 1985; Wilkinson, Martino, & Camilli 1994).

Learning mathematics requires students to coordinate multiple efforts, 
including: building representations of knowledge (language and non-
language based); accessing and/or constructing their own relevant 
mathematical knowledge; and mapping representations to that knowledge. 
At the same time, students must engage all of these efforts to establish a basis 
for action toward problem solving, which includes oral language and 
communication (Davis & Maher, 1990). Students’ constructing mathematical 
knowledge proceeds best by connecting students’ curiosity with their 
spontaneous recognition of patterns and relationships (Baroody & Ginsburg, 
1990).

Research has established that even young children, prior to formal 
schooling formulate and use the concept of mathematical proof in justifying 
solutions to problems (Maher & Martino, 1996). The research of Maher and 
Yankelewitz (2017) provides an example of this complex process of reasoning. 
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Their research has established that children, both primary and middle-school 
aged, can verbally articulate arguments in the form of proof by cases; 
induction; upper/lower bound and contradiction (Maher & Martino, 1996; 
Maher & Davis, 1995). The justifications that students produce may result 
from their coordinated efforts to make sense of the problem, notice patterns, 
and pose hypotheses (Mueller, Yankelewitz & Maher 2012; Maher & Martino, 
2000). Research has established that students continue in their efforts to 
refine their solutions through discussions, as they negotiate meaning with 
other students and structure their own investigations (Weber, Maher, Powell, 
& Lee, 2008; Maher, 2005). Finally, there is evidence that when students 
articulate convincing mathematical justifications (with language and non-
language representations), these students, in turn, further refine their own 
understandings of mathematical reasoning, which can then assist their efforts 
to validate mathematical statements for themselves and others (Yackel & 
Hanna, 2003).

The research cited above, as well as the work of others, has firmly 
established that the design of tasks is an essential element to create the 
optimal conditions for students’ building mathematical ideas and their 
language and non-language representations (Sullivan, Askew, Cheeseman, 
Clarke, Mornane, Roche, & Walker, 2014). Tasks should engage students and 
encourage them to deploy all of their relevant resources and personal 
knowledge to problem solving. Mathematics is defined by a combination of 
natural language, symbolism, models, and visual displays for expressing ideas; 
and as such, the discipline is multisemiotic (O’Halloran, 2015). Consequently, 
during problem-solving, students draw from these resources, as they move 
between oral and written modes of communication. Students must make 
connections among these three semiotic systems; importantly, they must use 
and understand language that is highly technical, dense and specific 
(Wilkinson, 2015).

From this perspective, language and other forms of communication 
support students’ refinement of representations, that are fundamental to their 
building mathematical knowledge (Moschkovich, 2018; Wilkinson, in press 
b). As Schoenfeld (1992) has noted, communication, including both oral and 
written language is by itself “an act of sense-making that is socially 
constructed and socially transmitted” (Schoenfeld, 1992). Mathematical 
situations are communicated through statements of problems or tasks, and 
students use this information to construct their mental representations 
(Davis & Maher, 1990).
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In sum, students express and refine their mental representations by 
creating external representations in the forms of language (both oral and 
written), drawings, symbols, written texts, etc. that can be communicated to 
others; this process, in turn, has the potential to interact and impact students’ 
learning (O’Halloran, 2015).

Learning Mathematics: The Mathematics Register and Communication 
during Problem Solving

Central to our perspective is the view that learning mathematics is a socially-
mediated process that encourages students to deploy their resources—
language and non-language-based—to the problem-solving tasks at hand.

This perspective aligns with U.S. national practice standards for 
mathematical learning. For example, the Common Core State Standards for 
Mathematics (Common Core State Standards Initiative, 2010) define optimal 
mathematical practices which must include those that stimulate students to 
“make sense of problems and persevere in solving them”, “construct viable 
arguments and critique the reasoning of others”, “model with mathematics”, 
and “conjecture”. Thus, from the U.S. standards standpoint, the mathematical 
processes of thinking, discovery, and problem solving are central to 
discovering mathematical patterns, gaining mathematical insight, and 
applying mathematics to real-world situations. Through communication with 
others—orally and in writing, students explore, offer conjectures, find patterns 
students build conceptual and procedural understandings of mathematical 
knowledge.

Thus, communication, both oral and written language, is central to 
success in having all students meet the standards of mathematical practice. 
The relationships among learning and teaching mathematics, and language 
and literacy are complex and require both students and teachers to know 
and use a variety of types of knowledge, including knowledge of the 
language (both oral and written), as well as non-linguistic representations 
of mathematical ideas such as symbols; visual representations such as charts 
and graphic; and gestures. Moschkovich (2008) has characterized these 
multiple sources as students’ use of “multiple material, linguistic, and social 
resources” (e.g., 2008, p.556). Her prior research has described in a 
detailed manner resources such as the multiple meanings expressed by 
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students, the information displayed in graphs, gestures, charts, metaphors, 
and code-switching between two or more languages (Moschkovich, 2008; 
2015; 2018).

Students’ language practices, including both oral and written, support 
their building mathematical understanding by interacting with others during 
the problem-solving processes (Wilkinson, in press a). Consequently, learning 
mathematics is a process of socialization into mathematical discourses 
(Barwell, 2018; Sfard, 2008; O’Halloran, 2015).

The Mathematics Register

Similar to other disciplines, mathematics employs its own way of speaking 
and writing the discipline (Halliday, 1975; Wilkinson, 2015; Wilkinson, in 
press a). Mathematics is dependent to a significant extent on language, both 
oral and written, and thus is not a non-verbal subject (Barwell, 2018; 
Moschkovich, 2015; Avalos, Medina, & Secada, 2018). As Ní Ríordáin & 
O’Donoghue (2009) summed up: “mathematics is not ‘language free’” 
(p.47). There are language challenges that are inherent to mathematics 
learning.

What makes an instructional language specialized, such as mathematics, 
is how lexical choices and syntactic constructions combine in specific ways to 
make language more or less linguistically dense or “complex” (Ravid, Dromi, 
& Kotler, 2010, p.126).

A register refers to any language variation that is socially shaped by 
the participants’ interactional engagement and is distinguished by the co-
occurrence of particular linguistic features in that situation. Consequently, 
a register serves a singular interactional purpose in a particular context. As 
Biber & Conrad (2001) note: “Register variation is inherent in human 
language: a single speaker will make systematic choices in pronunciation, 
morphology, word choice and grammar reflecting a range of non-linguistic 
factors” (p.4).

The mathematics register references the language of the discipline 
characterized by both lexical and syntactic characteristics: a highly 
technical vocabulary, semi-technical terms, dense noun phrases, complex 
subordinated clauses, conjunctions with precise meanings, and implicit 
logical relationships (Schleppregrell, 2007); as well as discourse level 
organization argumentation and proof (Uptegrove, 2015; Barwell, 2018; 
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Moschkovich, 2018). The relationships among linguistic, symbolic, and 
visual forms of representation of mathematical knowledge are quite 
complex. They are related in multiple and intricate ways, and they evolve 
throughout schooling and beyond. For schooling, students are required, 
and sometimes encouraged and supported directly in their efforts to learn 
to speak, read, and write mathematics in the more specific register of the 
discipline (Herbel-Eisenmann, Johnson, Otten, Cirillo, & Steele, 2015; 
Avalos, Medina, & Secada, 2018). The importance of language—both oral 
and written—is not limited to mathematical learning and teaching. For 
students to succeed in school, they must also display what they know on 
standardized tests, which often consist of assessments embedded in dense 
texts, such as complex word problems (Bailey, 2000/5; Frantz, Starr, & 
Bailey, 2015; Frantz, Bailey, Starr, & Perea, 2014; Martiniello, 2009; Cheuk, 
Daro, & Daro, 2018; Wylie, Bauer, Bailey, & Heritage, 2018).

Regarding mastery of this register, research has shown that at first, and 
also continuing throughout the school years, students often do not express 
their mathematical understandings by employing the mathematics register 
(Barwell, 2018). In contrast, students express ideas with representations that 
are personally meaningful but often idiosyncratic (Sigley & Wilkinson, 2015). 
Over time, students acquire the mathematics register and are able to apply 
that knowledge, as appropriate, in the variety of tasks as required by 
schooling (Uptegrove, 2015).

A Rich Database of Students’ Mathematical Problem Solving and 
Video-Narrative Analyses

In an effort to understand the complexity of the process of learning 
mathematics, multiple conceptual lenses and a rich data source are required. 
One major database of students’ learning mathematics was built by Rutgers 
Libraries: the Video Mosaic Collaborative (VMC) (https://videomosaic.org). The 
data originated from the research program of Professor Carolyn Maher with 
support from the National Science Foundation (Maher, 2005; Maher & Davis, 
1995; Maher & Martino, 1996; Maher & Martino, 2000; Maher, Powell, & 
Uptegrove, 2010; Maher & Yanekelewitz, 2017; Mueller & Maher, 2009; 
Wilkinson & Martino, 1993; Wilkinson, Martino, & Camilli, 1994). The 
database was developed by Rutgers University Library, with support from the 



10 Louise C. Wilkinson, Alison L. Bailey, and Carolyn A. Maher

National Science Foundation. The process of development is referenced in a 
series of research reports of students’ learning of mathematics (Maher et al., 
2010; Maher et al., 2014; Palius & Maher, 2013; Mueller & Maher, 2009; 
Maher & Yankelewitz, 2017). The types of data that are available to be 
searched include the following chacteristics: United States grade level of the 
student; mathematics strand (e.g., algebra, geometry); mathematics problem 
(e.g., binomial expansion, equivalent fractions, division of fractions); 
mathematics tool employed (e.g., graph paper, unifix cubes, calculator); a 
variety of artifacts (e.g. video-taped interactions; audio-taped interactions; 
transcriptions; the National Council of Mathematics Grade Range; the 
National Council of Mathematics Process Standard; the National Council of 
Mathematics Content Standard; forms of reasoning, strategies, and heuristics 
(e.g., recognize a pattern, recursive reasoning, direct reasoning); participants; 
mediators (adults); gender of participants; ethnicity of participants; setting 
(e.g., classroom, work area); location (the name of the school or other venue); 
video-camera views (e.g., student work view; teacher view; student view); 
date captured; related publications; and related elements of the VMC. 
Detailed examples of the kinds of data available in the VMC and their prior 
usage for studies are available in published, research reports (e.g., Maher, 
2010; Maher, 2014; Maher & Yanekelwitz, 2017; Mueller & Maher, 2009; 
Palius & Maher, 2013; Powell et al., 2003; Sigley & Wilkinson, 2014; Sigley & 
Wilkinson, 2015; Wilkinson & Martino, 1993; Wilkinson, Martino, & Camilli, 
1994).

The VMC also stores selected analyses of elements of the database and 
offers users the opportunity to create video narratives describing and 
analyzing students’ learning processes. These stored video-narratives have 
been used for research, instruction, and as an assessment tool; and are 
linked to scholarly publications (Agnew, et al., 2010; Maher & Yankelewitz, 
2017). Two examples of VMCAnalytics are described in the next section of 
this report.

Students’ Mathematical Reasoning, Communication and Language 
Representation: Two Examples of Video-Narrative Analyses

The following two examples reveal how students’ knowledge of mathematics 
and use of the mathematics register are both interconnected and integrated 
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continued

Title: Tracing Ariel’s Algebraic Problem Solving: A Case Study of Cognitive and 
Language Growth

Name: Co-Creators: Robert Sigley and Louise C. Wilkinson
Persistent URL: http://dx.doi.org/doi:10.7282/T3N0186C
Date Created: 2013–11–04T00:08:57–0500
Description: While research has shown that understanding the concept of a 

function is essential for success in other areas of mathematics (Rasmussen, 2000) 
students continue to struggle learning the concept (Vinner & Dreyfus, 1989). 
Research has revealed that young children, who are engaged in problem-solving 
activit ies designed to elicit justif ications for their solutions, develop an 
understanding of fundamental algebraic ideas such as function (Kieran, 1996; 
Yerushalmy, 2000). Davis (1985) advocated the introduction of early-algebra 
learning to elementary school students as young as grade 6. He argued that the 
idea of function can be built intuitively by students as they engage in explorations 
of problems requiring identification of increasingly more challenging patterns; 
further Davis claimed that students can build the conceptual idea before formal 
notation is introduced. Davis (1985) offered sets of algebra tasks for student 
exploration. The students constructed solutions that were expressed with linear, 
quadratic and exponential functions (Giordano, 2008). Extending this work, 
Bellisio and Maher (1998) studied students who provided verbal expressions of 
algebraic function prior to learning to write the rules in symbolic form. For 

in a small-group interactive learning activity.
Ariel. The first example provides an analysis of one student’s reasoning 

process and i l lustrates how knowledge of both mathematics and 
mathematical language are interconnected and integrated in a dyadic 
learning activity. The theme of this example is the distinction between the 
everyday, conversational language and the academic language register of 
mathematics. The detailed framework for analysis and the results of the prior 
studies are described in published research reports (Sigley & Wilkinson, 2013; 
Sigley & Wilkinson, 2015; Wilkinson, in press a; Wilkinson, in press b).

The focus is upon the process of transitioning from the former to the 
latter in the context of the discipline-specific language of mathematics (Sigley 
& Wilkinson, 2015). Ariel is an adolescent bilingual, whose home language is 
Spanish. He participated, for over 18 months, in an after-school, informal-
mathematics experience as he formed algebraic concepts to solve the Building 
Ladders Problem using the required oral and written language Tracing Ariel’s 
Algebraic Problem Solving: A Case Study of Cognitive and Language Growth 
(Sigley & Wilkinson, 2013).

The VMCAnalytic (video-narrative analysis) is given in Figure 1 and can be 
accessed directly: http://dx.doi.org/doi:10.7282/T3N0186C.
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The following analysis shows the progression of Ariel’s mathematical 
understanding of the Building Ladders Problem, including his increasing 
sophistication in using the mathematics register as linked to his mathematical 
understanding. Ariel was fluent in everyday English and did not receive 
English as a second language support services. However, initially, when 
expressing his solutions using everyday language, Ariel revealed that he 
did not understand the standard way one talks and writes mathematical 

additional background on students’ algebraic learning see the video narrative, 
Ariel Constructing Linear Equations for “Guess My Rule” and the “Ladder” 
Problems: http://dx.doi.org/doi:10.7282/T34Q7WS9.

This analytic describes how one student, Ariel, builds an understanding of the 
linear function concept and represents his understanding of the basic algebra ideas 
underlying the construction. One focus is to see if students could provide a general 
solution to the problem. A second focus is on use of the mathematics register. The 
analytic shows Ariel challenged to solve a task that requires finding how many light 
green Cuisenaire rods are needed to build a ladder with various number of rungs. The 
shortest ladder has only one rung and can be built with 5 light-green Cuisenaire rods. 
A 2-rung ladder would be modeled using 8 light-green rods. The problem was 
presented as follows: The Ladders Problem: Build a rod model to represent a 3-rung 
ladder. How many rods did you use? How many rods would you need to build a 
ladder with 10 rungs? How could you represent the number of rods needed if you 
were to build a ladder with any number of rungs? Justify your solution. The analytic 
reveals how Ariel first approaches the problem using an arithmetically proportional 
approach to build a recursive composite function that depends on whether the 
numbers of rods are even or odd. When he revisits the problem, 18 months later, his 
approach changes. He develops a function table, uses first differences, and constructs 
a general solution to the problem. His gradual adoption of the mathematics register is 
exemplified in his oral explanation of the meaning of his symbolic notation. The 
analytic highlights that early, informal open-ended problem-solving tasks provide 
students opportunities to construct their knowledge. These problem-solving tasks are 
explorations at the heart of developing mathematical understanding—not as simple 
follow-up activities to procedural instruction. One implication of this work is that 
teachers include both time and tasks for students to explore, examine, revisit, and 
connect ideas and concepts through investigations. In so doing students have 
authentic opportunities to build strong intuitions of the problem conditions. Students’ 
engagement in activities, such as the Building Ladders Problem, provide them with the 
foundation for gaining insights and deeper understandings of mathematics. Ariel used 
such an opportunity and built his algebra knowledge. His success is revealed in the 
elegance of his solution, the understanding of his earlier work, and his confidence in 
offering clear justifications.

Figure 1.  Tracing Ariel’s Algebraic Problem Solving: A Case Study of Cognitive and Language Growth.

Continued
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discourse (Ravid et al., 2010).
At an early point during his problem-solving process, Ariel formulated a 

composite rule for his solution; he constructed two separate rules, one for the 
odd number of rungs of a ladder, and one for the even number. Ariel stated: 
For odd numbers, I go to the nearest even number and take one-half of that even 
number, count the rods for a ladder with that many steps, multiply by 2, subtract 
2 and add 3. After Ariel stated that odd number rule and wrote it down, he 
justified his work with the statement: Because for every new thingy it is 3 rods 
and it will give me 29. Ariel made progress on his construction of his 
mathematical understanding, and he expressed his justification by including 
an invented unconventional or slang term, thingy, to indicate the precise 
mathematical referent.

A year and a half later, when Ariel was presented with the same problem, 
he responded as follows:

Because, I just looked at it and if you multiply each by 3, it’s gonna be, m plus 
the y intercept, which is gonna be 2, cause if it’s adding 3 each time, if you 
reverse this to when it was at zero, it would be a 2 right there. Wait, yeah, it’d 
be a 2 right there. And then, this ［pointing to 3］ would be your slope of 3, and 
your y intercept of 2 [indicating the value of (0, 2)]. And then it’s a linear 
equation.

Ariel’s later solution to the problem included greater specificity in 
mathematical language, revealing an understanding of how mathematical 
symbolism is used in representing a solution. He incorporated some linguistic 
complexity in his expression. Additionally, he revealed his metalinguistic 
awareness of the procedural aspects of the process. Many of Ariel’s vocabulary 
choices with his first problem-solving encounter as a 7th grade student 
employed everyday language (it’s gonna be). In contrast, in 8th grade, his 
precise use of the technical term linear equation, exemplified the mathematics 
register. Ariel used the syntactic patterns of the conditional (if ), nominal 
(which), and adverbial (because, when) subordinators. These patterns rendered 
his explanation linguistically dense, which is a defining characteristic of the 
mathematics register. His pathway to providing an elegant solution to the 
Building Ladders Problem, over an extended period of time, revealed his efforts 
to coordinate greater conceptual complexity with greater linguistic 
complexity and precision. Ariel’s everyday language, including subordinating 
devices, combined with his contextualizing of details (i.e., non-specific 
referents, such as it, this and there, and his use of gestures), demonstrated 
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that he adopted some elements of the mathematics register for expression.
This example suggests that mathematical teaching should have a focus 

beyond vocabulary learning. The perspective on teaching and learning 
through problem solving that is taken here emphasizes the complexity of 
simultaneously learning mathematics and the broad domains of the language 
of mathematics. Problem solving is one way that students are accorded 
opportunities to develop deep understandings of mathematical concepts; to 
acquire the language of mathematics (the mathematics register); and to 
adopt multiple ways of representing mathematical solutions.

In sum: Students should be provided with opportunities to forge ideas 
through thought, and test them in discourse with other students and 
teachers. These opportunities create the optimal circumstances for students to 
construct their own mathematical understandings, and then they may then 
build a more complete knowledge of the mathematics register. The analysis 
of Ariel’s problem solving illustrates how mathematical knowledge, and 
language knowledge are both interconnected and integrated in an interactive 
learning activity.

Stephanie. The second example focuses on a 4th-grade student’s 
exploration and construction of a justification for a general solution to a 
counting problem in the context of a small group interaction. The theme of 
this example is Stephanie’s use of language throughout this event, in which 
she displayed complex patterns of specific, linguistically dense formulations, 
which are the defining characteristics of the mathematics register. During the 
group problem solving, all four members attended to each other’s comments, 
thus sustaining their engagement with the mathematical problem. The 
detailed framework for analysis and the results of the prior studies are 
described in published research reports (Ortiz, 2014; Krupnik, 2014; Bailey, 
Wilkinson & Maher, in preparation).

The source for this event is the combinatorics strand of students’ 
mathematical reasoning (https://rucore.libraries.rutgers.edu/rutgers-
lib/52147/emap/1/standalone). The event was extracted from the Rutgers-
Kenilworth longitudinal study of children’s reasoning: Stephanie’s Journey with 
the Towers (Grades 3–8): A Metaphor for Making Connections (Ortiz, 2014). 
Four students (Stephanie, Milin, Jeff, Michelle) were asked to convince the 
adult facilitator (Professor Carolyn Maher) and each other of their solutions to 
a counting task of building all possible Unifix-cube towers, 3 cubes tall, 
selecting from two colors. Counting tasks that investigated variations of tower 
problems were introduced to these students in 3rd grade, and continued 
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throughout their secondary years. In the counting tasks used for this strand, 
their work together revolved around the task of sharing justifications (Krupnik, 
2014; see also, Krupnik, 2017).

The duration of the event is approximately 4 minutes and 30 seconds 
and is taken 18 minutes into the 38-minute session (https://doi.org/
doi:10.7282/T3BV7JDG).

Initially, the students were asked by Professor Maher: You gotta convince 
me that there are 8 and only 8 and no more or fewer. In an attempt to convince 

Title: Stephanie’s Journey with the Towers (Grades 3–8): A Metaphor for Making 
Connections

Name: Creator: Solaris Ortiz
Date Created: 2014–04–15T21:35:46–0400
Persistent URL: https://doi.org/doi:10.7282/T3BV7JDG
Description: This analytic shows that “learning is primarily metaphoric—we build 

representations for new ideas by taking representations of familiar ideas and 
modifying them as necessary, and the ideas we start with often come from the earliest 
years of our lives” (Davis, 1984). Davis’ idea of teaching was centered on the idea that 
students should be provided with opportunities to build assimilation paradigms. 
Assimilation paradigms were created when students used something from their past 
that they already knew (a tool, a representation, a model, an experience) in order to 
take in and process new information. The “something they already knew” is an 
assimilation paradigm (Davis, 1996).

The events followed Stephanie, a student in the Rutgers longitudinal study of 
children’s reasoning. As a 3rd grader, she builds towers 4 cubes tall selecting from 
two colors of Unifix cubes (interlocking cubes of different colors that children use to 
build models when solving mathematics problems), red and yellow. Stephanie was 
part of a group interview entitled with Jeff, Michelle, and Milin, where she had an 
opportunity to justify how she knew that she could account for all possible towers 3 
cubes tall when selecting from two colors. She built towers in 4th and 5th grades, 
which forms the foundation for this analytic. Subsequently, additional events reveal 
how Stephanie, as an 8th grader, used the towers as a metaphor to made sense of 
combinatoric notation for selecting a specific number of objects from a set. She 
connected this notation for tower choices when selecting from two colors to the first 
5 rows of Pascal’s Triangle. A summary of Stephanie’s work in the group for the 4th 
grade is as follows: Stephanie’s experience with the towers problem occurred in 
February of 1992, when she was in the 4th grade. Asked now to build towers that 
were 5 cubes tall selecting from two colors, Stephanie and her partner Dana took a 
different approach. They built certain patterns and then their opposites. During this 
interview, facilitated by Professor Carolyn Maher, Stephanie justified her solution by 
using an argument by cases showing the towers with zero blues, 1 blue, 2 blues, and 
3 blues.

Figure 2.  Stephanie’s Journey with the Towers (Grades 3—8): A Metaphor for Making Connections.
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her classmate Jeff that she had attempted to account for all possibilities, 
Stephanie used a “modified proof by cases” approach to organize the towers 
as follows: towers with no blue cubes, towers with exactly 1 blue cube, towers 
with exactly 2 blue cubes stuck together (adjacent to each other), towers with 
exactly 3 blue cubes, and towers with exactly 2 blue cubes separated (by a 
red cube). Jeff interjected at this point with his statement: I have a question. 
Responding to the request to justify her solution path, Stephanie and her 
classmates engaged in a dialogue, rich with her responses to queries and 
challenges. She and her classmates expressed their ideas through 
representations, including written notations and verbal explanations. They 
constructed a table using symbols to represent the different possibilities for 
towers, which were arranged as cases. Examination of the close links between 
language and reasoning revealed Stephanie used her own invented notation 
and revealed informal “proof-like” reasoning. She used both everyday and 
academic language, including some aspects of the mathematics register and 
subordinating language devices, revealing complex language.

Stephanie’s justification for finding all possible towers, 3 cubes tall, 
when selecting from two colors reveals her ultimate success in offering a 
clear justification for her solution. She offered an argument by cases with 
symbols to represent the cube colors by showing the towers with no blues, 
1 blue, 2 blues together, 3 blues, and 2 blues separated. The discussion 
centered around understanding of her argument with two classmates 
suggesting that she organize by four cases (none, one color, 2 colors, and 
3 colors). Stephanie was adamant in explaining how she did it, presenting 
a valid case organization but one that was less elegant (splitting the 2 blue 
case into 2 blue together and 2 blue separated), thus providing some 
insight into her mathematical understanding. Importantly, one member 
(Jeff) who was absent in recent days, raised a question; an initial comment 
stimulates the rich mathematical dialogue among group members: I have 
a question. Do you have to make a pattern? Consequently, the remaining 
three group members (Stephanie, Milin, and Michelle) dedicated a process 
of explaining to him why or why not it was necessary to discover patterns 
to complete the counting task.

A closer examination of the content of Stephanie’s turns at talking also is 
revealing, since she was the student who took on the role of explaining to 
Jeff: it’s just easier to work with a pattern to participate effectively in the 
process. Importantly, Stephanie justified her solution by using an argument 
by cases showing the towers with zero blues, 1 blue, 2 blues (together and 



17ECNU Review of Education

separated), and 3 blues. Her statements revealed her understanding of using 
mathematical symbolism to represent the physical model with cubes and thus 
apply an elegant representation to her problem solving. She incorporated 
some linguistic complexity for expression, via subordination. Additionally, she 
showed some metalinguistic awareness of the procedural aspects of the 
process.

Regarding her language more specifically, in the first cycle, most of 
Stephanie’s vocabulary choices employed everyday language (stuck together, 
that means, like okay I took). In contrast, in the second cycle, the term 
argument exemplified adoption of the more specific usage of the mathematics 
register. Stephanie included syntactic patterns of the conditional (if ), nominal 
(that and which), and adverbial (because) subordinators; and modal verbs 
(could); thus, displaying linguistically dense language, a defining characteristic 
of the mathematics register. Her pathway to providing an acceptable solution 
to the problem provides evidence of her efforts to coordinate greater 
conceptual complexity with greater linguistic complexity and specificity. 
However, Stephanie’s use of everyday language, including some 
subordinating devices, combined with her contextualizing of details (i.e., non-
specific referents, such as it, this and there, and her use of gestures and 
idiomatic English), demonstrated that she mixed elements of both everyday 
conversational language and the academic language mathematics register for 
expression of mathematical ideas.

This event demonstrates a small group working together well. The 
students were cooperative and showed their pragmatic abilities to take turns, 
rarely overlapping and rarely interrupting each other. They attended to each 
other’s comments and sustained their engagement with the mathematical 
problem presented throughout this event, and also throughout the entire 
session. For example, in responding to Jeff’s initial question about the need 
for patterns, Stephanie explained her organization of using two blue cubes 
separated by a red cube in a separate category. Michelle and Milin argued 
that she could classify this tower into the category of exactly two blue cubes. 
Stephanie conceded that this was a possibility but reported the way she 
solved it; that is, by her original organization of five cases.

VMCAnalyatics: In Sum. Both of these examples of the VMCAnalytics with 
the associated language analyses demonstrate the potential value of a rich 
database for collaborative research. These insights may not have been possible 
to obtain without the video-taped interactions, which render the data 
permanent and accessible. Transcriptions derived solely from audio recordings 
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and observational notes may not fully capture the fleeting but significant 
moments of students’ learning. Videotaped interactions that are available on 
the VMC allow researchers individually or jointly to attend, in detail, to the 
linguistic and mathematical behaviors of the students, enabling the discovery 
and documentation in fine detail of the learning process. Additionally, the 
VMC offers the possibility for researchers throughout the world to join the 
community and make use of the tools to build their own video narratives to 
accompany their work (https://videomosaic.org/vmc_community).

Conclusion

The U.S. Common Core State Standards for Mathematics emphasize the 
importance of students’ mathematical reasoning and the conditions of the 
learning environment. These include highly interactive problem-solving 
groups that offer students opportunities to convey their understandings with 
multi-modal representations including language. One of the primary 
implications of this work is a demonstration of the benefits of a permanent, 
fully accessible database on children’s mathematical learning for the greater 
research community, so that members can explore their research foci with 
robust data. The examples provided in this article demonstrate how 
collaboration from multiple disciplinary lenses is facilitated by the availability 
of a rich database.

Finally, the analyses offered by the VMCAnalytics may be applied to 
preparing teachers who should be capable of facilitating conditions that invite 
student collaboration, meaning seeking, justification, and the use of 
language—both oral written. Prior research has investigated the extent to 
which teachers are able to recognize forms of reasoning that children express 
and whether it is possible to improve their ability to recognize various forms 
of mathematical reasoning through an instructional intervention (Maher et 
al., 2014; Mueller, et al., 2012; Palius & Maher, 2013). The dissemination of 
this research has the potential to inform the members of principal disciplines 
about the potential for shifting teachers’ beliefs about students’ learning to 
focus on what they really know about mathematical understanding, so that 
they can communicate effectively those understandings with language and 
non-language representations. It is crucial for teachers world-wide to 
recognize and sustain children’s mathematical knowledge and knowledge of 
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the mathematics register, so that they may best support their students’ 
mathematical learning and the acquisition of the language that supports this 
learning (Bailey, Maher, & Wilkinson, 2018; Maher, Sullivan, & Wilkinson, in 
press).
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